首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   14篇
  国内免费   1篇
测绘学   13篇
大气科学   28篇
地球物理   124篇
地质学   84篇
海洋学   28篇
天文学   38篇
自然地理   19篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   8篇
  2015年   4篇
  2014年   18篇
  2013年   17篇
  2012年   12篇
  2011年   22篇
  2010年   24篇
  2009年   30篇
  2008年   14篇
  2007年   14篇
  2006年   13篇
  2005年   21篇
  2004年   4篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
331.
Daily rainfall variability over southern Africa (SA) and the southwest Indian Ocean (SWIO) during the austral summer months has recently been described objectively for the first time, using newly derived satellite products. The principle mode of variability in all months is a dipole structure with bands of rainfall orientated northwest to southeast across the region. These represent the location of cloud bands associated with tropical temperate troughs (TTT). This study objectively identifies major TTT events during November to February, and on the basis of composites off NCEP reanalysis data describes the associated atmospheric structure. The two phases of the rainfall dipole are associated with markedly contrasting circulation patterns. There are also pronounced intra-seasonal variations. In early summer the position of the temperate trough and TTT cloud band alternates between the SWIO and southwest Atlantic. In late summer the major TTT axis lies preferentially over the SWIO, associated with an eastward displacement in the Indian Ocean high. In all months, positive events, in which the TTT cloud band lies primarily over the SWIO, are associated with large-scale moisture flux anomalies, in which convergent fluxes form a pronounced poleward flux along the cloud band. This suggests that TTT events are a major mechanism of poleward transfer of energy and momentum. Moisture transport occurs along three principle paths: (1) the northern or central Indian Ocean (where anomalous fluxes extend eastward to the Maritime Continent), (2) south equatorial Africa and the equatorial Atlantic, (3) from the south within a cyclonic flow around the tropical-temperate trough. The relative importance of (2) is greatest in late summer. Thus, synoptic scale TTT events over SA/SWIO often result from large-scale planetary circulation patterns. Hovmoeller plots show that TTT development coincides with enhanced tropical convection between 10°–30°E (itself exhibiting periodicity of around 5 days), and often with convergence of eastward and westward propagating convection around 40°E. Harmonic analysis of 200 hPa geopotential anomalies show that TTT features are forced by a specific zonally asymmetric wave pattern, with wave 5 dominant or significant in all months except February when quasi-stationary waves 1, 2 and 3 dominate. These findings illustrate the importance of tropical and extratropical dynamics in understanding TTT events. Finally, it is suggested that in November–Januar TTT rainfall over SA/SWIO may be in phase with similar rainfall dipole structures observed in the South Pacific and South Atlantic convergence zones. Received: 11 August 1998 / Accepted: 28 May 1999  相似文献   
332.
Groundwater monitoring wells are present at most hydrocarbon release sites that are being assessed for cleanup. If screened across the vadose zone, these wells provide an opportunity to collect vapor samples that can be used in the evaluation of vapor movement and biodegradation processes occurring at such sites. This paper presents a low purge volume method (modified after that developed by the U.S. EPA) for sampling vapor from monitoring wells that is easy to implement and can provide an assessment of the soil gas total petroleum hydrocarbon (TPH) and O2 concentrations at the base of the vadose zone. As a result, the small purge method allows for sampling of vapor from monitoring wells to support petroleum vapor intrusion (PVI) risk assessment. The small purge volume method was field tested at the Hal's service station site in Green River, Utah. This site is well‐known for numerous soil gas measurements containing high O2 and high TPH vapor concentrations in the same samples which is inconsistent with well‐accepted biodegradation models for the vapor pathway. Using the low purge volume method, monitoring wells were sampled over, upgradient, and downgradient of the light nonaqueous phase liquid (LNAPL) footprint. Results from our testing at Hal's show that vapor from monitoring wells over LNAPL contained very low O2 and high TPH concentrations. In contrast, vapor from monitoring wells not over LNAPL contained high O2 and low TPH concentrations. The results of this study show that a low purge volume method is consistent with biodegradation models especially for sampling at sites where low permeability soils exist in and around a LNAPL source zone.  相似文献   
333.
A rural subdivision in south central Wisconsin was instrumented with monitoring wells and lysimeters before, during, and after its construction to examine the impacts of the unsewered subdivision on groundwater quality and quantity. Prior to construction, the 78-acre (32 ha) site was farmland. Sixteen homes were constructed beginning in 2003. Initial monitoring from 2002 to 2005 showed that groundwater beneath the site had been impacted by previous agricultural use, with nitrate-N values as high as 30 mg/L and some detections of the herbicide atrazine. Our 12-year study shows that the transition from agricultural to residential land use has changed groundwater quality in both negative and positive ways. Although groundwater elevations showed typical seasonal fluctuations each year, there were no measurable changes in groundwater levels or general flow directions during the 12-year study period. Chloride values increased in many wells, possibly as a result of road salting or water softener discharge. Nitrate concentrations varied spatially and temporally over the study period, with some initial concentrations substantially above the drinking water standard. In some wells, nitrate and atrazine levels have declined substantially since agriculture ceased. However, atrazine was still present at trace concentrations throughout the site in 2014. Wastewater tracers show there are small but detectable impacts from septic effluent on groundwater quality. Particle traces based on a groundwater flow model are consistent with the hypothesis that septic leachate has impacted groundwater quality.  相似文献   
334.
In order to enable greater accuracy in the determination of the mass discharge of gas and water-gas ratios (WGR) in groundwater from springs, we have developed a field-deployable instrument using commercially available components to independently measure the gas and water mass flow rates in springs with bubbling mixed-phase flow. Collecting and measuring the free gas phase will allow for further compositional analysis that may be useful in improving gas-derived parameters such as recharge temperature and age, as well as quantification of methanogenesis and flux of crustal/mantle gasses. By installing a phase separator at the spring discharge, a thermal mass flow sensor is utilized to measure the gas flow rate (ebullition + flux) generated from a spring. The water flow rate is determined by a standard weir. Field performance of the device was tested on a spring discharging from the Arbuckle-Simpson aquifer near the town of Connerville in south-central Oklahoma, USA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号